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CONDUCTIVE HEATING OF THE SOLAR WIND, III,
BREAKDOWN OF THE RAVIER-STOKES EQUATIONS
F. L. Scarf
TRW SYSTEMS

In our most recent discussion of solar wind theory (Scarf and
Noble, 1965), no detailed prediction of the flow pattern near the earth
was given. For the best £it solutiom my ™ 1.5 x 10°/em” sec at r = 108,
and the continuity relationm, !mr2 = ¢, then yilelds an unambiguous flux
value at the earth, J = 3.2k x m8 1ona/c-2 sec, but the proportions
of n and u which make up this flux must be derived by solving the dyna-
mical equations. Unfortunately, the validity of the Navier-Stokes
equations with conventional transport coefficients becomes questionable

long before the earth is reached.

The basic problem has to do with the assumption 4/L << 1, used
to derive the Revier-Stokes equation by the Chapman-Enskog technique
and the correct L must first be identified. If L is simply defined by
L{aN/ar! > N, then the original solutions of the conductive heating
equations indicate that £ = L near 75 - 100'R® . However, the problem
is not so easily solved, and the complications become important much
closer to the sun. It has already been noted that these conductive heat-
ing equations possess unphysical solutions with T(r) = 0, r < « and
T(r) = T, >0, r = =; in each case u = ® at the singularity. With the
hope that these annoying sclutions were only present because the viscous
forces (which presumably inhibit large velocity gradients) had been
artificially omitted, Scarf and Noble (1964, 1965) introduced the ap-
propriate viscous terms into the Navier-Stokes equations. For spherically
symmetric flow the complete Navier-Stokes equations have the form
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where E and ¢ = nur2 are constants of motion. TFor fully ionized hydrogen,

¢+

o)
wo= uo(T/TO)S/E, with u(TO) given in Eg. {9) of Scarf and Noble (19c5).
However, unlike the conductive coefficient, k(T), the viscous coefficilent
does change significantly as the gas composition is varied. The addition
of 10% helium reduces u to about 70% of its value for fully ionized hydro-
gen. Thus for the solar wind the Prandtl number, 4u/mk, is approximately
equal to 0.013. This explains why viscous contributions were previously
neglected. When the thermal and kinetic energies and gradients are
comparable, the viscous term in the energy equation 1s roughly (1 - 2)%

of the conductive term and where &T > mu2/2, the ratio 1s even smaller.

This kind of asrgument is indeed appropriate when one discusses
normael subsonic flow, but it should already be clear from Eg. (2) that a
serious error is possidble when the flow 1s supersonic. Even though uw(T)
1s numerically very small, if u is large and constant, the term hu(T)uer/3

can play a very important role in the energy balance equation as r in-

Numerieal integration of Egs. (1), {2) confirms this expectation,
tut the way in which the viscous stresses modify the flow appears at first
glance, to be unphysical. Figure 4 of Scarf and Noble (19c5) shows some
typical results derived by integrating in btoth directions from the cross-

ver. The parameter B is essentially the Prandtl number times

A= ER(Tb)GW%F/kdIbc where T, is the temperature at the coronal base. For

1%

the case shown there, A = 200, Ib =1.5 x lOD'K, and the curve labeled

B =0 is the one derived earlier, with no viscous terms at all. The
velocity profile labeled B = 2.46 is the numerical solution of the Navier-
Stokes equation with the appropriate coefficient of viscosity for the
coronal gas, and to the accuracy shown in this figure, the temperature

distribution is unchanged by the addition of viscosity.

It was noted by Scarf and Noble that in the subsonic region the
viscous terms produce a negligible change in u(r). This was expected
because 4u << mk and (l/2)nm2 < XT here. It can also be seen that the
viscous terms do induce a significant change in u(r) in the supersonic

region. Agein, this is not unexpected; although tu/mk remains small,



(l/2)mu2 becomes large compeared to 4T, and the viscous contribution to the
energy equation is comparable to the conductive term. However, it was
found thet u(r,B) is greater than u(r,B = 0). Physically, one would expect
viscous dissipation to yield s lower flow speed relative to the sun, and

not & higher one.

The answer to this paradox was found by trying to vary the Prandtl
number to approach B = 0. The curves for B = 0.1, 1.0, and 3.56 were cal-
culated using artificial and unphysical values for u(Tb), keeping k(ﬁb)
fixed. It was determined that as u(Tb) (or B) is increased, the flow speed
at any given radius does indeed decrease in a physically sensible manner.
However, as B —~ 0, we do not approach the curve B = 0 which 1s the solution

of the non-viscous conductive heating equations.

In fact, the "paradox" has an exact analogy when thermal cornductlon
glone 1s considered. If u and k are both neglected, then the flow is
adiabatic and T(r) ~r-h/3. However, if only the viscous terms are omitted,
then 2(r) = (x(1,)r) /% or (=27 + Ck(TO)'lr°l‘/ 74+ ...). The solutions
with finite thermal conductivity do not yield adiabatic flow in the limit
k(Ib) - 0, and similarly, the solutions with small but finite u(qb) do
not go over to the u(Ib) = 0 solutions as u(Tb) -~ 0. From a mathematical
point of view, this is also clear. The differential equations are of the
form 3T/dr = G/k(7), du/dr = F/u(T) and k = 0; u = 0 represent singu-
larities. The result 1s well known to serodynamicists. In "Flow of
Rarefied Gases," Schaaf and Chambre’ (19€1) remark on page 33, "Solutions
are thus singular in the viscosity (or equivalently, the mean free path),
and the boundary layer solution (for u — 0) cannot be obtained by pertur-
bation schemes starting with the inviscid solution."

If the B = 2.4€ curve in Figure 4 of Scarf and Noble (1965) is
regarded as the "correct” one, then this solution can be used to investi-
gate the limits of the continuum or fluid models of the corona. The first
question has to do with the precise meaning of the restriction %/L << 1.

In particular, it must be ascertained which scale length is involved. This
can be determined by examining the higher order terms in the Chapman-

Enskog treatment. The successive approximations are
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(Schaaf and Chembre’, 1961, p. 30) and thus the Navier-Stokes equations
1/2 1/2
should be valid if w(du/dr)/mkT << 1. Since u A~ nm / (&T) / 4, this can

be written sas
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and the appropriate scale length turns out to be the one associated with
the streaming velocit:. (This is not a statement of general validity.

(2)

The compliete expression for p:f contains temperature gradients as well.
The Navier-Stokes eguations begome questionable wrenever one of these
terms is significantly large. In our case, the velocity gradients are
steep bevond the crossover vwhile the thermal gradients remain moderate.)
By inspection of the numerical solution, Scarf and Noble (190k4) pointed

out that the above inequality is not satisfied beiond r = 20 R .

In the language of aerodiynamics, we pass from the continuum

1"

region to the "siip flow"

region when the appropriate Knudsen number ap-
proaches unity. For & neutral gas, the slip flow regime is bounded by

the region of continuum flow (4 << L) and free molecular flow (L >> L).
Aptually, because the solar wind is s magnetized plasma, there 1s no
region in which free flow occurs in the classical gasdynamics sense.
Nevertheless, we can define three regions. For (uG»G/nkT) << 1, the full
Navier-Stokes equations are valid. For u(G‘ﬁ)/nkT ~ 1, but tlar/ar << T,
the Navier-Stokes equations are not valid, but there are enough collisions
to maintain a statistical distribution function with & well-defined
temperature. For £4:dT/d&r' 2 T, ordinary two-body collisions are unimpor-
tant and the characteristics of the particle distribution functions are

determined ty other pieromena.

In ordinary gasdynamics no rigorous formulation of the equations

of motlon is available for slip flow. Various complex svstems of
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equations {the Burnett eguations, the Thirteen Moment equations) have been
proposed to replace the Navier-Stokes equations for moderate Knudsen
numbers, but these replacements introduce severe difficulties, and con-
siderable doubt exists about their physical validity. (Schaaf and
Chambre’, 1941, pp. 31-34.) It seems likely that no moment equations

will really be of use here, sc that the flow patterns have to be obtained
by solving the Boltzmann equation itself. However. it appears that the
Navier-Stokes equations, with some modifications, provide a better des-~
cription of the gas in the slip flow regime than the higher order systems.

This discussion indicates that at present no rigorous treatment
of the solar wind flow is possible beyond (15 - 20) R@ . In order to
ot-ain some bound to the range of flow patterns, Scarf and Notle {19t4)
arbitrarily assumed that the Navier-Stokes equations are strictly valid

G\
for a qulet solar wind are shown in Table I. Although these numbers

up to 17 R. , with adiebatic continuum flow beyond 17 R® . The results

obviously are subject to considerable revision as more realistic treat-

ments of the region beyond (15 - 20) Iﬂa are considered, the entries can

te used to evaluate roughly the range of importance of two-body col-
liszilons. We find 4{T,n) @&T/dr =T for r > 75 R@ ,
lisions cannot serve to maintaln the Boltzmann distribution function

and two-body col-

ragd

s

us. The radiel flow itself tends to introduce a severe
anisotropy in the absence of & randomizing mechanism {i.e., TW is gen-
erally not egqual to Ti for collisionless spherical flow becauée the
particles with.; paralliel to the mean flow direction tend to migrate
farther than those with finite vys in the presence of a central force
field this anlsotropy is even more marked, because the particles travel
on ballistic orbits). Thus, the close agreement between thre distribu-

frequently observed at the earth and a Boltzmann distribution
indicates that some mechanism other than two-particle scattering binds
the solar wind into a fluid and meintains the statistical spectrum

beyond (70 - 100) R
0]

One epproach to this problem has been attempted by Sturrock and
Hartle {19-5). They point out that as the density and temperatures

decline, the electrons and protons become thermally decoupled. and they



uggest use of a two-fluid model in the outer corone. The predicted

30 ¥ ana T, ~ 10% %.

proton temperature near the earth is then about 3 x 10
Although Te has not been well measured in interplanetary space, it is
xnown from measurements on Mariner 2, IMP 1, 2, and VELA 2, 3 that Tb is
generally much higher than this value (T ~ 2 x 10° °K). Thus, the

particle-wave scattering must heat the p

Four kinds of instability which generate waves in s ﬂollisionless
plasma have been discussed in the litersture. For nK(TH-T > B /hﬂ the
"firehose" instabilitv (Parker, 1958) allows Alfvén waves to grow. If
nK(TL) /TH > B /Bn, the system will be instatle with respect to the growth
of magnet;sonic waves. Both of these instabilitles would easily arise
in the absence of collisions because only the wave scattering maintains
Tx:x Tﬁ. However, velocity space anisotropies also allow low frequency
electrostatic plasma oscillations to grow to large emplitudes (Harris,
19¢1; Rosenbluth and Post, 1965). Finally, if fluctuations in the solar
wind speed produce electric currents or longitudinal electric fields, ion
wave drift instabilities will be triggered. The interplanetary electric
field, i = -U x %/C, is normally about lO7 greater than the runswar field.
ER =-¥Te/e&, where 4 is the mean free path, but E does not produce runaway
since it is normel to B. However, it would seem that fluctuations in
%/f%( yielding & fluctuasting electric fileld 5E = -U x 6§/C could encily

lead to a runaway situation.

The availlable evidence suggests rather strongly that magnetosonic
waves do not have large smplitudes in the solar wind. Holzer. Mcleod, and
Smith (1965) found a very rapid decrease in spectral intensity above
(0.2 - 0.5) cps when 0GO-1 was in interplanetary space. An indirect sup-
port for this contention comes from the IMP-1 magnetometer results (Ness,
et al., 1974), since detection of large variances implies that the tilted
fluxgate is contaminated by significant high frequency noise {Greenstadt,
19c5; Fredricks and Sonnet, 13¢5). The general absence of large 5.46
minute variances in interplanetary space therefore suggests that little
high frequency msgnetic noise was present. Thus, the thermalizing waves
are protatly long period magnetic oscillations of the Alfvén variety, or

electrostatic plasma oscillations.



The plasma oscillatiions are the ones which can account for proton
rhesting most easily ia 2 stochastic cyclotron acceleration process (Stix
W X >

1gek; Scar?, et al., 19%5; Fredricks, et al., 1965; Sturrock, 1965), and

trons can also be accelerated by these waves. Indeed, the Marimer 4
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rlanetary obscrvations {Van Allen anéd Krimigis, 1965) of about L0 kev
energy electrons strongly suggest that an interplanetury acceleration pro-
cess is operative, as originally suggested by Parker (1765). However,
further experimental study of the electromagnetic and etiectrostatic noise

spectrum in the solar wind is clearly needed.
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